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Determination of the interaction force between two adsorptive surfaces delimiting a critical
binary polymer blend
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We consider a mixture of two incompatible polymérandB, confined between two parallel surfaces of the
same chemical nature, separated by a distandeis assumed that both surfaces strongly adsorb one of the
specieqA) at high temperature. It is also assumed that a demixing transition occurs at a critical tempeyature
below the adsorption temperatufg. The strong adsorption implies that the composition of spegiem
surfaces is quenched even when the temperature is lowered. The presence of strong density fluctuations near
the critical point induces an interaction between the surfaces. We reexamine this attractive force and determine
its dependence with the thickndsswhen the latter is smaller than the thermal correlation length. We find that,
in the vicinity of the critical point, this force decreases with distanck @ We show that the corresponding
amplitude is a universal number, independent of the value of the composition on surfaces, and wegaa its
expression. Finally, we note that the present system may be considered as a typical model enabling one to
understand qualitatively and quantitatively the flocculation of colloids embedded in critical binary polymer
blends.

PACS numbdrs): 64.75+g, 68.45-v, 61.41+e

[. INTRODUCTION chemical nature confined between two parallel plane sur-
faces, separated by a distaricdn this problem, two effects
The physics of phase separation of binary polymer blendare simultaneously present, namély the interactions be-
in contact with an adsorbing surface is a very rich problemiween the mixture and the surfaces, afid the finite-size
For example, under certain special conditions, the mixtureffects due to the finite value of the thicknesq6]. The
can exhibit a wetting transition at some characteristic tempresence of the surfaces induces changes in the effective in-
peratureT,, below the critical temperatur€.. From a ther-  teractions that rule the phase separation and in the chemical
modynamic point of view, wetting is a genuine phase transipotential. This implies that the phase equilibrium betwéen
tion, which is characterized by the appearance of a film ofand B near surfaces is different from that in the b{ii-9].
the preferred phase in contact with the wall. Wetting in poly-Finite-size effects are related to the fact that the system is
mer blends is the subject of a great deal of attention botlinite in one direction, say, the direction (O<z<L). A
from theoretical 1-3] and experimental points of viej4]. quantitative study of these effects may be achieved compar-
Very recently[5], we considered another problem con- ing the thicknesd. and the bulk thermal correlation length
cerning a binary mixture of two incompatible polymers in [10], £&~aNY3(1—T./T) 2 Here,N is the degree of po-
the presence of an adsorbing surface. In fact, this problerlymerization,a the monomer size, anf, the critical demix-
differs from wetting by the nature of surface preparation. Weing temperature. Wheh is larger thant,(L> &), finite-size
have assumed that the surface irreversibly adsorbs one effects are less important and they contribute only by expo-
both polymers at high temperatures. Consequently, chainsentially small corrections. Thus wheh becomes very
cannot desorb once they are linked to the surface. We havarge, these effects may be neglected, and only the surface
also supposed that the surface is completely saturated, amdfects have to be taken into account. However, whée-
that phase separation takes place at a critical temper@iture comes smaller thag,(L<¢,), finite size effects cannot be
below the adsorption temperatufg. The strong adsorption neglected, and they induce a drastic change of the behavior
implies that the density fluctuations at the surface arenear the critical point. In particular, this constrains the sys-
guenched even when temperature is lowered. We studie@m to undergo a two-dimensional phase transition or phase
quantitatively the effects of these frozen fluctuations on theseparation in the directions parallel to the surfaces.
bulk critical properties of the mixture. In particular, we de- Now consider a binary mixture of two incompatible poly-
termined the shape of the composition profitg§ for any  mersA andB confined between two parallel surfaces local-
value of the surface composition and temperature near thized respectively at=0 andz=L. These surfaces are then
critical point. In this work, the physical system we considerparallel to the(x,y) plane. We denote by= ¢, the mono-
is rather a mixture of two polymeré and B of different  mer fraction(or composition of polymerA, and because of
the incompressibility condition, the composition of polymer
B is ¢g=1—¢. We assume that the surfaces are prepared
* Author to whom correspondence should be addressed. Electronighemically in such a way that they strongly adsorb one or
address: daoud@llIb.saclay.cea.fr both polymers at high temperature. Thus the system is con-
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strained to have quenched compositions on surfaces. We derder parameter or composition fluctuatignThis is usually
note by ¢, and ¢, the respective surface compositions. defined as the distance between two points on the coexist-
There are essentially three distinct physical situations, deence curve of an infinite systef0,15. Explicitly, we have
pending on the preference of surfaces to ad#odn B poly-

mers:(i) both surfaces adsor (or B) species(ii) one sur- _ ﬂ )

face adsorb#\ and the otheB, or (iii) both surfaces equally 2

adsorbA andB. In a previous worK11], we determined the

composition profile of one specig¢say,A), as a function of In this definition appears the critical compositigh= 1/2

the distance from the surface located at=0 for all values  [10].

of the parameters of the problem, which are the absolute In a previous wor11], we showed that the free energy
temperatureT, the sizel, and the quenched surface compo- (per unit areagoverning the physics of the system is a func-
sitions ¢, and ¢, . Also, we have evaluated numerically, in tional AF of the order parametep, which is given by

all cases, the expression of the interaction forces between the

tWo ol iqinati i i AF (v (1 1 a?[dy)\?
plates originating from the strong density fluctuations ~ _—a 3f dz] = [xe— X102+ —— A+ — | -
that are present near the critical point. kgT 4:1¢ 12N 9\dz) |
In this work, we reexamine the problem of the computa- 2

tion of this interaction force as a function of the distarhice _ ) _ ) )
between the two plates. We restrict ourselves to the casknis free energy is of Landau-Ginzburg type, and is obtained
where the specie\ is dominant on both surfaces, and in by €xpanding the usual Flory-Huggins free eneir,15 in
addition, we assume that,= ¢, . This condition means that the vicinity of the critical compositions.=1/2 or equiva-
the two plates have the same chemical nature. More prdently aroundy=0. In the above expressiog~T* stands
cisely, we show that the expected foidewhich is attractive  for the Flory interaction parametef,,=2/N~T_* for its
[11], decreases with the distance: &, asII~L ~*. Also, we  critical value, whereN is the polymerization index assumed
show that the associated amplitude is universal and we givé® be the same for both polymefsandB, anda is the Kuhn

its exactvalue. Our motivation for evaluating this interaction statistical segment. In the right-hand side of relatia) the
force is the following. The present system may be regardetfst term accounts for the interfacial free energy between
as a typical example of threephase system, made up of a Afich andA-poor phases. As shown in RéfL1], the pres-
colloidal dispersion in a binary mixture of two incompatible €nce of surfaces manifests itself through the boundary con-
polymersA andB. Colloids are particles of mesoscopic size, ditions

which are the subject of numerous studies because of their

abundant industrial applications. We can imagine that one Y(z=0)=¢(z=L)=o, 3

polymer, say, strongly adsorbs on colloids at high tempera-with do=(1+ y)/2. We recall that the surface composition

se . . )
separates in two phases alternatively riciAiandB species. g(’ Is a known quantity5], which depends on the necessary

. ; g . ! free energy to adsorb one monomer on the surface.
CO'.IO'dS clothed bY speciek located in theB-rich side ex: Let us comment briefly about the situation where the ad-
perience an attractive force, as we have already shown in the

case of lamellar colloidgl1]. This attraction force is respon- sorption of chains is reversiblel6]. This means that the
. : S . esp atter can desorb once they are attached to surfaces. This
sible for flocculation. This problem was discussed in a shor

note by Fisher and de GennEg, but for liquid mixtures mplies that the order parameter fluctuates at surfaces, and

: . that the true free energy should include, in addition to the
made of small molecules. Very recently, in a series of ex-

periments[12,13, the behavior of silica beads with diam- .bU|k contri_bution(2), a surface free energy_s[ Yo, 9] that
eters of about 0.Jum, immersed in a binary liquid mixture Esﬂaéun_;_:ft:gn:&g‘ C:?:Qesggzce r%(;m%(;ilg(;ﬁ fgrnrg lﬁ_u all
of lutidine (A) and water(B) was investigated. Near the criti- = gy may y

cal point, it was found that the silica colloids exhibit a encountered in critical phenomena in the presence of sur-

sharply defined reversible aggregation, termed floccuIationf.aces[lg’zq’ that s,

Those colloids prepared using the B&0 method are known
to adsorb on lutidine preferentiall\t2]. The flocculation oc- Fd o, 1= E (Hathat ga¢§/2). 4
curs in the water-rich side of the phase diagram. In the same a=oL

context, Netz has introduced a theoretical model of Landau;

. . . Here, u, and g, are, respectively, the chemical potential
Ginzburg type[14] for_studylng the roccuIat|(_)n phenom- change at the surface and the surface coupling constant. We
enon observed experimental[y.2,13. Theoretical results

) ; . denote byédiy, and dy the thermal fluctuations of order
seem to be in good agreement with the experiment.
. . 4 arameterys at surfaces. Under the changg— 5+ 8,
This paper is organized as follows. In Sec. Il, we presen

the model of interest and compute the interaction forceazo'l‘)’ the variation of the surface energy reads
within the framework of such a model. Our conclusions are SF, 2a’l
oFo-|

-1
. . S
given in Sec. Il T Tr?zl//o) Ohot

) 2
A + g9 oYy .
5

The notationd/ ¢, is the functional derivative. Heré, i,
We first define the model that allows us to evaluate thgla=0,L), which naturally emerges when integrating by parts
interaction force. We start by recalling the definition of thethe squared gradient term in formul2), stands for the nor-

Il. MODEL AND RESULTS
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mal derivative of the compositiogr at the surfaces. In our behavior of the order parametet,~ |t|°t of an infinite sys-
case, because the surface compositions are quenched for &, andA,;=1/2 acrossoverexponent. The latter expresses
temperatures&iyo=0, Sy =0), the surface free energy is a a natural comparison between bulk and surface composi-

constant §Fs=0), and therefore does not contribute to thetions; respectivelygy, and . &~ayN|t|""((1,=1/2) is
critical properties of the mixture. Hence the system is conthe bulk thermal correlation length.
strained to have fixed compositions on both surfaces at any Our aim is the determination of the interaction force be-

temperature.

tween the two plates originating from the fluctuations in

In the annealed case, when the surface compositions atmposition, which are strong near the critical point. This
not quenched, the order parameter must satisfy the following¢orce (per unit arealIl, which is attractive fol. <§&, [11], is

boundary conditions:
-1

—g— datho= 5F 5 8o, (6a)
2at
TﬂzlﬂL:—ﬁFS/&ﬁL. (Gb)
This will be considered elsewhere.
Now it will be convenient to introduce the following simpli-
fied notations:

Xe—x T-T¢
=—=—, 7
- T (78
u=1/3N, (7b)
k=a?/9, (70

where Eq.(7a) is the reduced temperature shift and Egp)
the coupling constant.

The standard minimization of the free enerfy¥, with
respect to the order parametgryields a nonlinear second-
order differential equation. We give merely its first integral:

&
K

2

=G(¢) —G(¢m),

iz 8

where G(¢) is the dimensionless bulk free-energy density,

which is

G = o 2t gt ©)
2N 47"

In relation (8), ¥,=/(L/2) is the unique minimum of the

profile  [11], which is reached in the middle of the film
(z=L/2). Such a minimum is found to be given by the
guadrature formula

L—ijod ;
=2), NG -G

We note that the right-hand side of relatioh0) is an

(10

elliptic integral[21]. This relation expresses the dependence

of the minimum ¢, upon the absolute temperatufe the
thickness of the filnL, and the surface valug, of the order

parameter. In addition, this relation tells us that the minimum

of the profile may be written in the following scaling form:

Pm=t/Pg(LI &, golt] ),

whereg(x,y) is a two-factor scaling function. In the above

11

defined as the first derivative of the free energy; ild.,
—dAF/4L. We have shown previously thft1]

M=~ —5G(im), (12
whereG(¢) is defined above, in Eq9). The above relation
clearly shows that the interaction for¢per unit area be-
tween the two plates depends only on the minimal vakye

of the profile and not on its shape.

Relations(10) and(12) are two parametric equations giv-
ing the variation of the forcé&l as a function of the thickness
L by eliminating the parametef,,. This problem was solved
numerically in Ref[11].

We wish to determine the scaling law giving the depen-
dence of the interaction fordd with L. Combining relations
(9), (11), and(12), we find, in the critical region, the follow-
ing scaling law:

kgT
M= it shigoplt ), 19

whereh(x,y) is a two-factor scaling function, whose expres-
sion is known. The extra critical exponent has a vadye
=0. We note that the scaling functidrfx,y) has the correct
limit when the reduced variabhg= |t| ~*t becomes large
(y>1). This can be realized when the surface composition
o reaches its saturation value, which is 1, at a fixed tem-
perature, or whenyy is fixed butt— 0. In this limit, we have

a universal scaling law, independent of the surface composi-
tion ¢y, which is

kgT e
HZ—@“l th(l_/gt) (14)

Hereh(x) is a universal scaling function, independent of the
surface value of the composition. In the linit< &, the force
must be independent of temperature. This constrains the scal-

ing functionh(x) to follow a power law in the variable;

i.e., h(x)~x™. We easily find that the exponent has as
valuem= —4. Finally, we get the following scaling law for
the interaction force:

NksT [a\*
The latter result may be understood by noting that because
mean field applies here, the exponeqin relation(14) van-
ishes. This implies thall~t?~ ¢ # for an infinite system.
For a finite one, thé. ~* dependence follows directly if one

relation, B;=1/2 is the critical exponent characterizing the assumes the scaling relati¢i). As expected, the calculated
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FIG. 1. Variation of the(reduced force a®I1/NkgT with the
thicknessL of the film, expressed in monomer-siaaunits.

force is proportional to the polymerization index per chidin
We find that the universal amplitudeis given by

A=5214 (16)
wherel is the elliptic integral21]
| = f +00&21.854 074 68. (169
1 Jut-1
Then the final value of the amplitude is
A=28.01077352, (17)
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IlIl. CONCLUSIONS

We calculated the attractive force between two parallel
plates clothed by a thin irreversible adsorption layer of a
polymer A, and delimiting a polymer mixturéd+B. This
force, which results from the existence of strong fluctuations
in the composition, is naturally a function of the separation
between the two plates. To evaluate such a force, we used a
Landau-Ginzburg model, which is a direct consequence of
the classical Flory-Huggins theory. The presence of the sur-
face manifests itself through a condition that the composition
on surfaces is quenched, at any temperature. In the critical
region of the phase diagram, we have shown that the ex-
pected forcdl decreases with the separatibrbetween the
surfaces according to a power labl,~L %, and that the
associated amplitude is a universal number, independent of
the surface value of the composition. We have found the
exact value of this amplituded=28.010773 52.

In the reversible adsorption case, the profile is sensitive to
the boundary conditions on surfadejuations(6)]. Conse-
quently, the corresponding force should be affected by these
boundary conditions. Such considerations are in progress
[16].

We emphasize that in a recent wq&], Tranet al. con-
sidered a similar problem. More precisely, within the frame-
work of the Alexander—de Gennes model, they have shown
that the interaction force per unit aréar disjoining pres-
sure between two polymer brushes in a binary solvent mix-
ture obeys the same decay with distaricethat is, II
~L~* Finally, as wepointed outin the Introduction, the
present system may be regarded as a typical example of a
threephase system, made up of a colloidal dispersion in a
binary mixture of two incompatible polymeis and B.
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